LM-79-19 TEST REPORT

for
P.Q.L., Inc.

2285 Ward Avenue / Simi Valley, CA 93065

LED Tube

91474, 91475, 91476
All measurements are the same except CCT.

Laboratory: Leading Testing Laboratories

NVLAP CODE: 200960-0
3rd Floor, Bld. 2, NO. 96 Longchuanwu Rd Qianjiang Economy Dev. Zone, YuhangDist, Hangzhou, Zhejiang Province, China 311100

Tel: +86571 86376106
www.ledtestlab.com

Report No: HZ22100009a

The laboratory that conducted the testing detailed in this report has been accredited for SSL by NVLAP.

Review by:

[^0] Government.

Quality Assured

TEST SUMMARY

Tested Model	$\mathbf{9 1 4 5 9}$	$\mathbf{9 1 4 7 4}$	$\mathbf{9 1 4 7 5}$	$\mathbf{9 1 4 7 6}$
Luminous Efficacy (Lumens /Watt)	141.1	144.8	149.1	150.5
Total Luminous Flux (Lumens)	1700.8	1812.6	1820.2	1878.7
Power (Watts)	12.05	12.52	12.21	12.48
Power Factor	0.9792	0.9785	0.9785	0.9794
CCT (K)	3068	3519	8000	5141
CRI	82.0	80.0	50.1	50.3
Stabilization Time (Light \& Power)	50 mins	3500 K	4000 K	5000 mins
Note	3000 K			

Table 1: Executive Data Summary

Test specifications:

Date of Receipt
Date of Test
Test item

Reference Standard
: Oct. 17, 2022
: Oct. 20, 2022 \& Nov. 09, 2022
: Total Luminous Flux, Luminous Distribution Intensity, Luminous Efficacy,
Correlated Color Temperature, Color Rendering Index, Chromaticity
Coordinate, Electrical parameters
: IESNA LM-79-2019 Approved Method: Electrical and Photometric
Measurements of Solid-State Lighting Products
ANSI/IES TM-30-18 IES Method for Evaluating Light Source Color
Rendition
ANSI/UL 8750 Light Emitting Diode (LED) Equipment for Use in Lighting
Products
UL 1993 Self-Ballasted Lamps and Lamp Adapters

TABLE OF CONTENT

LM-79-19 TEST REPORT 1
TEST SUMMARY 2
SAMPLE PHOTO 5
TEST RESULTS of 91459 6
Sphere-Spectroradiometer Method 6
Spectral Power Distribution - Sphere Spectroradiometer Method 7
Chromaticity Diagram - Sphere Spectroradiometer Method 8
Nominal CCT Quadrangles - Sphere Spectroradiometer Method 9
Color Rendition Report - Sphere Spectroradiometer Method 10
Goniophotometer Method 11
Zonal Lumen Tabulation- Goniophotometer Method 12
Illuminance Plots- Goniophotometer Method. 13
Luminous Intensity Distribution Plots- Goniophotometer Method. 14
Luminous Intensity Data- Goniophotometer Method 15
TEST RESULTS of 91474 17
Sphere-Spectroradiometer Method 17
Spectral Power Distribution - Sphere Spectroradiometer Method 18
Chromaticity Diagram - Sphere Spectroradiometer Method. 19
Nominal CCT Quadrangles - Sphere Spectroradiometer Method 20
Color Rendition Report - Sphere Spectroradiometer Method 21
Goniophotometer Method 22
Zonal Lumen Tabulation- Goniophotometer Method 23
Illuminance Plots- Goniophotometer Method 24
Luminous Intensity Distribution Plots- Goniophotometer Method. 25
Luminous Intensity Data- Goniophotometer Method 26
TEST RESULTS of 91475 28
Sphere-Spectroradiometer Method 28
Spectral Power Distribution - Sphere Spectroradiometer Method 29
Prepared by: Leading Testing Laboratories
Chromaticity Diagram - Sphere Spectroradiometer Method 30
Nominal CCT Quadrangles - Sphere Spectroradiometer Method 31
Color Rendition Report - Sphere Spectroradiometer Method 32
Goniophotometer Method 33
Zonal Lumen Tabulation- Goniophotometer Method 34
Illuminance Plots- Goniophotometer Method 35
Luminous Intensity Distribution Plots- Goniophotometer Method 36
Luminous Intensity Data- Goniophotometer Method 37
TEST RESULTS of 91476 39
Sphere-Spectroradiometer Method 39
Spectral Power Distribution - Sphere Spectroradiometer Method 40
Chromaticity Diagram - Sphere Spectroradiometer Method 41
Nominal CCT Quadrangles - Sphere Spectroradiometer Method 42
Color Rendition Report - Sphere Spectroradiometer Method 43
Goniophotometer Method 44
Zonal Lumen Tabulation- Goniophotometer Method 45
Illuminance Plots- Goniophotometer Method 46
Luminous Intensity Distribution Plots- Goniophotometer Method. 47
Luminous Intensity Data- Goniophotometer Method 48
ISTMT Test Results 50
EQUIPMENT LIST 51
TEST METHODS 51
Seasoning of SSL Product 51
Sphere-Spectroradiometer Method- Photometric and Electrical Measurements 51
Goniophotometer Method 52
Photometric and Electrical Measurements 52
Color Characteristics Measurements 52
ISTMT Measurements 52

SAMPLE PHOTO

Figure 1- Overview of the sample

Equipment Under Test(EUT)

Name
Model

Electrical Ratings
Product Description
: LED Tube
$: 91459-3000 \mathrm{~K}$
91474-3500K
91475-4000K
91476-5000K
: $120-277 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 12 \mathrm{~W}$
: Manufacturer of light source: Bridgelux Inc.
Model of LED light source: BXVN-30E-11L-3EJ-000-00-00-0 (3000K)
BXVN-35E-11L-3EJ-000-00-00-0 (3500K)
BXVN-40E-11L-3EJ-000-00-00-0 (4000K)
BXVN-50E-11L-3EJ-000-00-00-0 (5000K)

Manufacturer	: P.Q.L., Inc.
Address	$: 2285$ Ward Avenue / Simi Valley, CA 93065

Quality Assured

TEST RESULTS of 91459

Test ambient temperature was $26.0^{\circ} \mathrm{C}$.
Base orientation was base up. Test was conducted without a dimmer in the circuit.
The stabilization time of the sample was $\underline{50}$ minutes, and the total operating time including stabilization was $\underline{55}$ minutes.

Sphere-Spectroradiometer Method

Parameter	Result	
Test Voltage (V)	120.0	277.0
Voltage frequency (Hz)	60	60
Test Current (A)	0.103	0.049
Power Factor	0.9792	0.9112
Test Power (W)	12.05	12.43
THD A\%	18.08	19.32
Luminous Efficacy (lm/W)	141.1	138.6
Total Luminous Flux (lm)	1700.8	1722.7
Color Rendering Index (CRI)	82.0	
R9	4.1	
Correlated Color Temperature (CCT)(K)	3068	
Chromaticity Chroma x	0.4316	
Chromaticity Chroma y	0.4014	
Chromaticity Chroma u	0.2483	
Chromaticity Chroma v	0.3464	
Duv		
Chromaticity Chroma u	-0.0003	
Chromaticity Chroma v'	0.2483	

Special Color Rendering Indices	
R1	80.8
R2	91.9
R3	94.9
R4	79.1
R5	81
R6	90
R7	81.4
R8	57.3
R9	4.1
R10	81.4
R11	78.4
R12	69.1
R13	83.6
R14	97.9

Table 2: Test data per Sphere-Spectroradiometer Method

Note: According to CIE $1976\left(u^{\prime}, v^{\prime}\right)$ diagram, $u^{\prime}=u=4 x /(-2 x+12 y+3), v^{\prime}=3 v / 2=9 y /(-2 x+12 y+3)$.

Spectral Power Distribution - Sphere Spectroradiometer Method

Chart 1: Spectral Power Distribution

Spectral Distribution over Visible Wavelength								
WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	
380	$1.09 \mathrm{E}-04$	485	$7.42 \mathrm{E}-03$	590	$3.33 \mathrm{E}-02$	695	$5.73 \mathrm{E}-03$	
385	$1.09 \mathrm{E}-04$	490	$8.15 \mathrm{E}-03$	595	$3.42 \mathrm{E}-02$	700	$4.91 \mathrm{E}-03$	
390	$1.23 \mathrm{E}-04$	495	$9.45 \mathrm{E}-03$	600	$3.45 \mathrm{E}-02$	705	$4.19 \mathrm{E}-03$	
395	$1.08 \mathrm{E}-04$	500	$1.11 \mathrm{E}-02$	605	$3.45 \mathrm{E}-02$	710	$3.57 \mathrm{E}-03$	
400	$9.70 \mathrm{E}-05$	505	$1.28 \mathrm{E}-02$	610	$3.39 \mathrm{E}-02$	715	$3.05 \mathrm{E}-03$	
405	$1.06 \mathrm{E}-04$	510	$1.41 \mathrm{E}-02$	615	$3.29 \mathrm{E}-02$	720	$2.63 \mathrm{E}-03$	
410	$1.74 \mathrm{E}-04$	515	$1.53 \mathrm{E}-02$	620	$3.15 \mathrm{E}-02$	725	$2.24 \mathrm{E}-03$	
415	$2.81 \mathrm{E}-04$	520	$1.62 \mathrm{E}-02$	625	$2.98 \mathrm{E}-02$	730	$1.91 \mathrm{E}-03$	
420	$4.67 \mathrm{E}-04$	525	$1.70 \mathrm{E}-02$	630	$2.78 \mathrm{E}-02$	735	$1.62 \mathrm{E}-03$	
425	$8.89 \mathrm{E}-04$	530	$1.76 \mathrm{E}-02$	635	$2.58 \mathrm{E}-02$	740	$1.35 \mathrm{E}-03$	
430	$1.62 \mathrm{E}-03$	535	$1.83 \mathrm{E}-02$	640	$2.36 \mathrm{E}-02$	745	$1.17 \mathrm{E}-03$	
435	$2.97 \mathrm{E}-03$	540	$1.90 \mathrm{E}-02$	645	$2.15 \mathrm{E}-02$	750	$1.00 \mathrm{E}-03$	
440	$5.36 \mathrm{E}-03$	545	$1.99 \mathrm{E}-02$	650	$1.93 \mathrm{E}-02$	755	$8.50 \mathrm{E}-04$	
445	$9.96 \mathrm{E}-03$	550	$2.10 \mathrm{E}-02$	655	$1.73 \mathrm{E}-02$	760	$7.38 \mathrm{E}-04$	
450	$1.74 \mathrm{E}-02$	555	$2.23 \mathrm{E}-02$	660	$1.53 \mathrm{E}-02$	765	$6.17 \mathrm{E}-04$	
455	$2.16 \mathrm{E}-02$	560	$2.36 \mathrm{E}-02$	665	$1.35 \mathrm{E}-02$	770	$5.35 \mathrm{E}-04$	
460	$1.69 \mathrm{E}-02$	565	$2.53 \mathrm{E}-02$	670	$1.18 \mathrm{E}-02$	775	$4.64 \mathrm{E}-04$	
465	$1.27 \mathrm{E}-02$	570	$2.70 \mathrm{E}-02$	675	$1.03 \mathrm{E}-02$	780	$3.91 \mathrm{E}-04$	
470	$1.10 \mathrm{E}-02$	575	$2.87 \mathrm{E}-02$	680	$8.97 \mathrm{E}-03$			
475	$8.64 \mathrm{E}-03$	580	$3.05 \mathrm{E}-02$	685	$7.75 \mathrm{E}-03$			
480	$7.24 \mathrm{E}-03$	585	$3.21 \mathrm{E}-02$	690	$6.67 \mathrm{E}-03$			

Table 3: Spectral Power Distribution Numerical Data per Sphere - Spectroradiometer Method

Chromaticity Diagram - Sphere Spectroradiometer Method

Tristimulus values(x, y): $(0.4316,0.4014)$
Chart 2: Chromaticity Diagram per Sphere - Spectroradiometer Method

Note: The location on the diagram of the tristimulus coordinates are indicated by the blue diamond.

Nominal CCT Quadrangles - Sphere Spectroradiometer Method

Chart 3: Plot of Lamp x / y coordinates on CIE 1931 Chromaticity Diagram

Color Rendition Report - Sphere Spectroradiometer Method

ANSI/IES TM-30-18 Color Rendition Report

Source: LED
Date: 2022/10/20

Manufacturer: P.Q.L., Inc.
Model: 91459

Notes: This is a recommended method for

x	0.4316
y	0.4014
u^{\prime}	0.2483
v^{\prime}	0.5195

CIE	$13.3-1995$ (CRI)
R_{a}	82
R_{9}	4

Colors are for visual orientation purposes only. Created with the ANSI/IES TM-30-18 Calculator Version 2. 00 .
Chart 4: Full Report Created with the IES TM-30 Calculator

Note: The values in this diagram might be a little different from the values in Table 2 due to rounding.

Quality Assured

Goniophotometer Method

Test ambient temperature was $25.1^{\circ} \mathrm{C}$.
The photometric distance is 30 m .
Luminous data was taken at $\underline{0.5^{\circ}}$ vertical intervals and $\underline{0^{\circ}}$ horizontal intervals.

Parameter	Result
Test Voltage (V)	120.0
Voltage frequency (Hz)	60
Test Current (A)	0.103
Power Factor	0.9793
Power (W)	12.10
Luminous Efficacy (lm/W)	141.4
Total Luminous Flux (lm)	$116.8\left(0^{\circ}-180^{\circ}\right) / 257.4\left(90^{\circ}-270^{\circ}\right)$
Beam Angle $\left(^{\circ}\right)$	256
Center Beam Candle Power (cd)	
Maximum Beam Candle Power (cd)	$258.2(\mathrm{At:} \mathrm{C=240.0}, \mathrm{Gamma=10.5)}$
Spacing Criteria	$1.35\left(0^{\circ}-180^{\circ}\right) / 1.49\left(90^{\circ}-270^{\circ}\right)$
Zonal Lumens in the $0^{\circ}-60^{\circ} \mathrm{Zone}$	
Zonal Lumens in the $60^{\circ}-90^{\circ}$ Zone	
Zonal Lumens in the $90^{\circ}-120^{\circ}$ Zone	26.16%
Zonal Lumens in the $120^{\circ}-180^{\circ}$ Zone	

Table 4: Test data per Goniophotometer Method

Zonal Lumen Tabulation- Goniophotometer Method

$\gamma\left({ }^{\circ}\right)$	Lumens	\% Total
$0-10$	24.318	1.42%
$10-20$	71.009	4.15%
$20-30$	111.839	6.54%
$30-40$	143.646	8.40%
$40-50$	164.045	9.59%
$50-60$	172.084	10.06%
$60-70$	168.21	9.83%
$70-80$	155.091	9.07%
$80-90$	137.911	8.06%
$90-100$	123.019	7.19%
$100-110$	109.181	6.38%
$110-120$	95.32	5.57%
$120-130$	80.712	4.72%
$130-140$	63.709	3.72%
$140-150$	46.739	2.73%
$150-160$	29.857	1.75%
$160-170$	12.652	0.74%
$170-180$	1.241	0.07%
Total	1710.6	100%

$\gamma\left({ }^{\circ}\right)$	Lumens	\% Total
$0-60$	686.941	40.16%
$60-90$	461.212	26.96%
$0-90$	1148.15	67.12%
$90-180$	562.43	32.88%
$0-180$	1710.6	100%

Table 5: Zonal Lumen

Illuminance Plots- Goniophotometer Method

Chart 5: Illuminance Plot (Footcandles)

Luminous Intensity Distribution Plots- Goniophotometer Method

Chart 6: Isocandela Plot

Chart 7: Polar Candela Distribution

Luminous Intensity Data- Goniophotometer Method

Table 6: Luminous Intensity Data

Table 7: Luminous Intensity Data

Quality Assured

TEST RESULTS of 91474

Test ambient temperature was $26.0^{\circ} \mathrm{C}$.
Base orientation was base up. Test was conducted without a dimmer in the circuit.
The stabilization time of the sample was $\underline{50}$ minutes, and the total operating time including stabilization was $\underline{55}$ minutes.

Sphere-Spectroradiometer Method

Parameter	Result	
Test Voltage (V)	120.0	277.0
Voltage frequency (Hz)	60	60
Test Current (A)	0.107	0.051
Power Factor	0.9785	0.9155
Test Power (W)	12.52	12.91
THD A\%	18.47	19.02
Luminous Efficacy (lm/W)	144.8	142.3
Total Luminous Flux (lm)	1812.6	1837.1
Color Rendering Index (CRI)	82.0	
R9	4.9	
Correlated Color Temperature (CCT)(K)	3519	
Chromaticity Chroma x	0.4040	
Chromaticity Chroma y	0.3898	
Chromaticity Chroma u	0.2352	
Chromaticity Chroma v	0.3405	
Duv	-0.0001	
Chromaticity Chroma u \quad	0.2352	
Chromaticity Chroma v'	0.5107	

Special Color Rendering Indices R1 R2	
R3	80.2
R4	88.9
R5	80.7
R6	80.2
R7	85.1
R8	84.4
R9	4.2
R10	74.1
R11	79.6
R12	63.3
R13	82.2
R14	97.7

Table 8: Test data per Sphere-Spectroradiometer Method

Note: According to CIE $1976\left(u^{\prime}, v^{\prime}\right)$ diagram, $u^{\prime}=u=4 x /(-2 x+12 y+3), v^{\prime}=3 v / 2=9 y /(-2 x+12 y+3)$.

Quality Assured

Spectral Power Distribution - Sphere Spectroradiometer Method

Chart 8: Spectral Power Distribution

Spectral Distribution over Visible Wavelength								
WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	
380	$1.37 \mathrm{E}-04$	485	$7.57 \mathrm{E}-03$	590	$3.31 \mathrm{E}-02$	695	$5.30 \mathrm{E}-03$	
385	$1.20 \mathrm{E}-04$	490	$8.74 \mathrm{E}-03$	595	$3.35 \mathrm{E}-02$	700	$4.54 \mathrm{E}-03$	
390	$1.51 \mathrm{E}-04$	495	$1.07 \mathrm{E}-02$	600	$3.36 \mathrm{E}-02$	705	$3.87 \mathrm{E}-03$	
395	$1.20 \mathrm{E}-04$	500	$1.29 \mathrm{E}-02$	605	$3.32 \mathrm{E}-02$	710	$3.31 \mathrm{E}-03$	
400	$1.22 \mathrm{E}-04$	505	$1.51 \mathrm{E}-02$	610	$3.24 \mathrm{E}-02$	715	$2.81 \mathrm{E}-03$	
405	$1.57 \mathrm{E}-04$	510	$1.68 \mathrm{E}-02$	615	$3.12 \mathrm{E}-02$	720	$2.42 \mathrm{E}-03$	
410	$2.83 \mathrm{E}-04$	515	$1.84 \mathrm{E}-02$	620	$2.97 \mathrm{E}-02$	725	$2.07 \mathrm{E}-03$	
415	$5.47 \mathrm{E}-04$	520	$1.94 \mathrm{E}-02$	625	$2.80 \mathrm{E}-02$	730	$1.77 \mathrm{E}-03$	
420	$1.07 \mathrm{E}-03$	525	$2.03 \mathrm{E}-02$	630	$2.61 \mathrm{E}-02$	735	$1.49 \mathrm{E}-03$	
425	$2.08 \mathrm{E}-03$	530	$2.10 \mathrm{E}-02$	635	$2.41 \mathrm{E}-02$	740	$1.27 \mathrm{E}-03$	
430	$3.86 \mathrm{E}-03$	535	$2.16 \mathrm{E}-02$	640	$2.21 \mathrm{E}-02$	745	$1.09 \mathrm{E}-03$	
435	$6.99 \mathrm{E}-03$	540	$2.24 \mathrm{E}-02$	645	$2.00 \mathrm{E}-02$	750	$9.17 \mathrm{E}-04$	
440	$1.24 \mathrm{E}-02$	545	$2.32 \mathrm{E}-02$	650	$1.80 \mathrm{E}-02$	755	$7.90 \mathrm{E}-04$	
445	$2.13 \mathrm{E}-02$	550	$2.42 \mathrm{E}-02$	655	$1.61 \mathrm{E}-02$	760	$6.62 \mathrm{E}-04$	
450	$2.87 \mathrm{E}-02$	555	$2.52 \mathrm{E}-02$	660	$1.42 \mathrm{E}-02$	765	$5.74 \mathrm{E}-04$	
455	$2.50 \mathrm{E}-02$	560	$2.63 \mathrm{E}-02$	665	$1.25 \mathrm{E}-02$	770	$4.83 \mathrm{E}-04$	
460	$1.72 \mathrm{E}-02$	565	$2.77 \mathrm{E}-02$	670	$1.09 \mathrm{E}-02$	775	$4.19 \mathrm{E}-04$	
465	$1.35 \mathrm{E}-02$	570	$2.90 \mathrm{E}-02$	675	$9.54 \mathrm{E}-03$	780	$3.58 \mathrm{E}-04$	
470	$1.03 \mathrm{E}-02$	575	$3.02 \mathrm{E}-02$	680	$8.31 \mathrm{E}-03$			
475	$7.82 \mathrm{E}-03$	580	$3.14 \mathrm{E}-02$	685	$7.19 \mathrm{E}-03$			
480	$7.11 \mathrm{E}-03$	585	$3.24 \mathrm{E}-02$	690	$6.19 \mathrm{E}-03$			

Table 9: Spectral Power Distribution Numerical Data per Sphere - Spectroradiometer Method

Chromaticity Diagram - Sphere Spectroradiometer Method

Tristimulus values(x, y): (0.4040, 0.3898)
Chart 9: Chromaticity Diagram per Sphere - Spectroradiometer Method

Note: The location on the diagram of the tristimulus coordinates are indicated by the blue diamond.

Nominal CCT Quadrangles - Sphere Spectroradiometer Method

Chart 10: Plot of Lamp x / y coordinates on CIE 1931 Chromaticity Diagram

ANSI/IES TM-30-18 Color Rendition Report

Source: LED
Date: 2022/10/20

Manufacturer: P.Q.L., Inc.
Model: 91474

Notes: This is a recommended method for displaying ANSI/IES TM-30-18

x	0.4040
y	0.3898
u^{\prime}	0.2352
v^{\prime}	0.5107

CIE	$13.3-1995$ (CRI)
R_{a}	82
R_{9}	5

Colors are for visual orientation purposes only. Created with the ANSI/IES TM-30-18 Calculator Version 2. 00.
Chart 11: Full Report Created with the IES TM-30 Calculator

Note: The values in this diagram might be a little different from the values in Table 8 due to rounding.

Goniophotometer Method

Test ambient temperature was $24.9^{\circ} \mathrm{C}$.
The photometric distance is $\underline{30} \mathrm{~m}$.
Luminous data was taken at $\underline{0.5^{\circ}}$ vertical intervals and $\underline{0^{\circ}}$ horizontal intervals.

Parameter	Result
Test Voltage (V)	120.0
Voltage frequency (Hz)	60
Test Current (A)	0.107
Power Factor	0.9784
Power (W)	12.55
Luminous Efficacy (lm/W)	145.3
Total Luminous Flux (lm)	$116.5\left(0^{\circ}-180^{\circ}\right) / 255.0\left(90^{\circ}-270^{\circ}\right)$
Beam Angle $\left(^{\circ}\right)$	274
Center Beam Candle Power (cd)	
Maximum Beam Candle Power (cd)	$1.36\left(0^{\circ}-180^{\circ}\right) / 1.49\left(90^{\circ}-270^{\circ}\right)$
Spacing Criteria	
Zonal Lumens in the $0^{\circ}-60^{\circ}$ Zone	40.30%
Zonal Lumens in the $60^{\circ}-90^{\circ}$ Zone	27.00%
Zonal Lumens in the $90^{\circ}-120^{\circ}$ Zone	
Zonal Lumens in the $120^{\circ}-180^{\circ}$ Zone	

Table 10: Test data per Goniophotometer Method

Zonal Lumen Tabulation- Goniophotometer Method

$\gamma\left({ }^{\circ}\right)$	Lumens	\% Total
$0-10$	26.068	1.43%
$10-20$	76.083	4.17%
$20-30$	119.764	6.57%
$30-40$	153.738	8.43%
$40-50$	175.474	9.62%
$50-60$	183.888	10.08%
$60-70$	179.604	9.85%
$70-80$	165.513	9.08%
$80-90$	147.289	8.08%
$90-100$	131.101	7.19%
$100-110$	116.049	6.36%
$110-120$	100.991	5.54%
$120-130$	85.369	4.68%
$130-140$	67.435	3.70%
$140-150$	49.343	2.71%
$150-160$	31.415	1.72%
$160-170$	13.25	0.73%
$170-180$	1.266	0.07%
Total	1823.6	100%

$\gamma\left({ }^{\circ}\right)$	Lumens	\% Total
$0-60$	735.015	40.30%
$60-90$	492.406	27.00%
$0-90$	1227.42	67.31%
$90-180$	596.219	32.69%
$0-180$	1823.6	100%

Table 11: Zonal Lumen

Illuminance Plots- Goniophotometer Method

Chart 12: Illuminance Plot (Footcandles)

Luminous Intensity Distribution Plots- Goniophotometer Method

Chart 13: Isocandela Plot

Chart 14: Polar Candela Distribution

Luminous Intensity Data- Goniophotometer Method

Table 12: Luminous Intensity Data

Table 13: Luminous Intensity Data

Quality Assured

TEST RESULTS of 91475

Test ambient temperature was $26.0^{\circ} \mathrm{C}$.
Base orientation was base up. Test was conducted without a dimmer in the circuit.
The stabilization time of the sample was $\underline{50}$ minutes, and the total operating time including stabilization was $\underline{55}$ minutes.

Sphere-Spectroradiometer Method

	Result	
Test Voltage (V)		
Voltage frequency (Hz)	120.0	277.0
Test Current (A)	60	60
Power Factor	0.104	0.050
Test Power (W)	0.9785	0.9120
THD A\%	12.21	12.55
Luminous Efficacy (lm/W)	18.54	19.32
Total Luminous Flux (lm)	149.1	146.6
Color Rendering Index (CRI)	1820.2	1839.7
R9	81.1	
Correlated Color Temperature (CCT)(K)	2	
Chromaticity Chroma x	4000	
Chromaticity Chroma y	0.3808	
Chromaticity Chroma u	0.3786	
Chromaticity Chroma v	0.2246	
Duv	0.3350	
Chromaticity Chroma u	0.0008	
Chromaticity Chroma v'	0.2246	

Special Color Rendering Indices R1 R2	
R3	79.1
R4	86.7
R5	80.9
R6	79.4
R7	81.8
R8	65.4
R9	2.8
R10	68.8
R11	79.9
R12	59.4
R13	80.7
R14	96.1

Table 14: Test data per Sphere-Spectroradiometer Method

Note: According to CIE $1976\left(\mathrm{u}^{\prime}, \mathrm{v}^{\prime}\right)$ diagram, $\mathrm{u}^{\prime}=\mathrm{u}=4 \mathrm{x} /(-2 \mathrm{x}+12 \mathrm{y}+3), \mathrm{v}^{\prime}=3 \mathrm{v} / 2=9 \mathrm{y} /(-2 \mathrm{x}+12 \mathrm{y}+3)$.

Spectral Power Distribution - Sphere Spectroradiometer Method

Chart 15: Spectral Power Distribution

Spectral Distribution over Visible Wavelength								
WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	
380	$1.82 \mathrm{E}-04$	485	$8.04 \mathrm{E}-03$	590	$3.15 \mathrm{E}-02$	695	$4.57 \mathrm{E}-03$	
385	$1.51 \mathrm{E}-04$	490	$9.47 \mathrm{E}-03$	595	$3.15 \mathrm{E}-02$	700	$3.89 \mathrm{E}-03$	
390	$1.59 \mathrm{E}-04$	495	$1.18 \mathrm{E}-02$	600	$3.12 \mathrm{E}-02$	705	$3.31 \mathrm{E}-03$	
395	$1.35 \mathrm{E}-04$	500	$1.44 \mathrm{E}-02$	605	$3.05 \mathrm{E}-02$	710	$2.83 \mathrm{E}-03$	
400	$1.06 \mathrm{E}-04$	505	$1.67 \mathrm{E}-02$	610	$2.96 \mathrm{E}-02$	715	$2.43 \mathrm{E}-03$	
405	$1.83 \mathrm{E}-04$	510	$1.86 \mathrm{E}-02$	615	$2.82 \mathrm{E}-02$	720	$2.08 \mathrm{E}-03$	
410	$3.73 \mathrm{E}-04$	515	$2.02 \mathrm{E}-02$	620	$2.67 \mathrm{E}-02$	725	$1.78 \mathrm{E}-03$	
415	$7.60 \mathrm{E}-04$	520	$2.12 \mathrm{E}-02$	625	$2.50 \mathrm{E}-02$	730	$1.52 \mathrm{E}-03$	
420	$1.56 \mathrm{E}-03$	525	$2.21 \mathrm{E}-02$	630	$2.32 \mathrm{E}-02$	735	$1.27 \mathrm{E}-03$	
425	$3.05 \mathrm{E}-03$	530	$2.28 \mathrm{E}-02$	635	$2.13 \mathrm{E}-02$	740	$1.09 \mathrm{E}-03$	
430	$5.67 \mathrm{E}-03$	535	$2.34 \mathrm{E}-02$	640	$1.94 \mathrm{E}-02$	745	$9.27 \mathrm{E}-04$	
435	$1.03 \mathrm{E}-02$	540	$2.40 \mathrm{E}-02$	645	$1.75 \mathrm{E}-02$	750	$7.93 \mathrm{E}-04$	
440	$1.90 \mathrm{E}-02$	545	$2.47 \mathrm{E}-02$	650	$1.57 \mathrm{E}-02$	755	$6.74 \mathrm{E}-04$	
445	$3.19 \mathrm{E}-02$	550	$2.55 \mathrm{E}-02$	655	$1.40 \mathrm{E}-02$	760	$5.84 \mathrm{E}-04$	
450	$3.60 \mathrm{E}-02$	555	$2.63 \mathrm{E}-02$	660	$1.23 \mathrm{E}-02$	765	$4.99 \mathrm{E}-04$	
455	$2.56 \mathrm{E}-02$	560	$2.72 \mathrm{E}-02$	665	$1.09 \mathrm{E}-02$	770	$4.33 \mathrm{E}-04$	
460	$1.79 \mathrm{E}-02$	565	$2.82 \mathrm{E}-02$	670	$9.48 \mathrm{E}-03$	775	$3.63 \mathrm{E}-04$	
465	$1.40 \mathrm{E}-02$	570	$2.91 \mathrm{E}-02$	675	$8.25 \mathrm{E}-03$	780	$3.19 \mathrm{E}-04$	
470	$9.91 \mathrm{E}-03$	575	$3.00 \mathrm{E}-02$	680	$7.17 \mathrm{E}-03$			
475	$7.72 \mathrm{E}-03$	580	$3.07 \mathrm{E}-02$	685	$6.18 \mathrm{E}-03$			
480	$7.43 \mathrm{E}-03$	585	$3.13 \mathrm{E}-02$	690	$5.32 \mathrm{E}-03$			

Table 15: Spectral Power Distribution Numerical Data per Sphere - Spectroradiometer Method

Chromaticity Diagram - Sphere Spectroradiometer Method

Tristimulus values(x, y): $(0.3808,0.3786)$
Chart 16: Chromaticity Diagram per Sphere - Spectroradiometer Method

Note: The location on the diagram of the tristimulus coordinates are indicated by the blue diamond.

Nominal CCT Quadrangles - Sphere Spectroradiometer Method

Chart17: Plot of Lamp x/y coordinates on CIE 1931 Chromaticity Diagram

Color Rendition Report - Sphere Spectroradiometer Method

ANSI/IES TM-30-18 Color Rendition Report

Source: LED
Date: 2022/10/20

Manufacturer: P.Q.L., Inc.
Model: 91475

Notes: This is a recommended method for displaying ANSI/IES TM-30-18 information.
$\begin{array}{ll}x & 0.3808\end{array}$
$y \quad 0.3786$
u' 0.2246
v, 0.5025

CIE13. 3-1995 (CRI)	
R_{a}	81
R_{9}	2

Colors are for visual orientation purposes only. Created with the ANSI/IES TM-30-18 Calculator Version 2. 00 .
Chart 18: Full Report Created with the IES TM-30 Calculator

Note: The values in this diagram might be a little different from the values in Table 14 due to rounding.

Quality Assured

Goniophotometer Method

Test ambient temperature was $24.9^{\circ} \mathrm{C}$.
The photometric distance is $\underline{30} \mathrm{~m}$.
Luminous data was taken at $\underline{0.5^{\circ}}$ vertical intervals and $\underline{0^{\circ}}$ horizontal intervals.

Parameter	Result
Test Voltage (V)	120.0
Voltage frequency (Hz)	60
Test Current (A)	0.104
Power Factor	0.9785
Power (W)	12.24
Luminous Efficacy (lm/W)	149.6
Total Luminous Flux (lm)	
Beam Angle (${ }^{\circ}$)	
Center Beam Candle Power (cd)	$117.1\left(0^{\circ}-180^{\circ}\right) / 254.1\left(90^{\circ}-270^{\circ}\right)$
Maximum Beam Candle Power (cd)	$276.9(\mathrm{At:} \mathrm{C=270.0}, \mathrm{Gamma=8.0)}$
Spacing Criteria	$1.30\left(0^{\circ}-180^{\circ}\right) / 1.49\left(90^{\circ}-270^{\circ}\right)$
Zonal Lumens in the $0^{\circ}-60^{\circ}$ Zone	40.29%
Zonal Lumens in the $60^{\circ}-90^{\circ}$ Zone	27.03%
Zonal Lumens in the $90^{\circ}-120^{\circ}$ Zone	19.12%
Zonal Lumens in the $120^{\circ}-180^{\circ}$ Zone	

Table 16: Test data per Goniophotometer Method

Zonal Lumen Tabulation- Goniophotometer Method

$\gamma\left({ }^{\circ}\right)$	Lumens	\% Total
$0-10$	26.187	1.43%
$10-20$	76.412	4.17%
$20-30$	120.265	6.57%
$30-40$	154.353	8.43%
$40-50$	176.18	9.62%
$50-60$	184.633	10.08%
$60-70$	180.412	9.85%
$70-80$	166.435	9.09%
$80-90$	148.296	8.10%
$90-100$	132.078	7.21%
$100-110$	116.798	6.38%
$110-120$	101.38	5.53%
$120-130$	85.391	4.66%
$130-140$	67.449	3.68%
$140-150$	49.426	2.70%
$150-160$	31.417	1.72%
$160-170$	13.182	0.72%
$170-180$	1.34	0.07%
Total	1831.6	100%

$\gamma\left(^{\circ}\right)$	Lumens	\% Total
$0-60$	738.03	40.29%
$60-90$	495.143	27.03%
$0-90$	1233.17	67.33%
$90-180$	598.461	32.67%
$0-180$	1831.6	100%

Table 17: Zonal Lumen

Illuminance Plots- Goniophotometer Method

Chart 19: Illuminance Plot (Footcandles)

Luminous Intensity Distribution Plots- Goniophotometer Method

Chart 20: Isocandela Plot

Chart 21: Polar Candela Distribution

Luminous Intensity Data- Goniophotometer Method

Table--1
UNIT: cd

Table 18: Luminous Intensity Data

Table 19: Luminous Intensity Data

Prepared by: Leading Testing Laboratories
3rd Floor, Bld. 2, NO. 96 Longchuanwu Rd Qianjiang Economy Dev. Zone, YuhangDist,
Hangzhou, Zhejiang Province, China 311100
Tel: +8657186376106 www.ledtestlab.com

Quality Assured

TEST RESULTS of 91476

Test ambient temperature was $26.0^{\circ} \mathrm{C}$.
Base orientation was base up. Test was conducted without a dimmer in the circuit.
The stabilization time of the sample was $\underline{50}$ minutes, and the total operating time including stabilization was $\underline{55}$ minutes.

Sphere-Spectroradiometer Method

Parameter	Result	
Test Voltage (V)	120.0	277.0
Voltage frequency (Hz)	60	60
Test Current (A)	0.106	0.050
Power Factor	0.9794	0.9149
Test Power (W)	12.48	12.77
THD A\%	18.15	20.03
Luminous Efficacy (lm/W)	150.5	148.4
Total Luminous Flux (lm)	1878.7	1895.0
Color Rendering Index (CRI)	84.3	
R9	17.3	
Correlated Color Temperature (CCT)(K)	5141	
Chromaticity Chroma x	0.3412	
Chromaticity Chroma y	0.3497	
Chromaticity Chroma u	0.2096	
Chromaticity Chroma v	0.3221	
Duv	0.0006	
Chromaticity Chroma u		
Chromaticity Chroma v	0.2096	

$\|l\|$ Special Color Rendering Indices R1	
R2	83.5
R3	88.5
R4	81.4
R5	85
R6	83.4
R7	87.7
R8	71
R9	17.3
R10	72.2
R11	84.8
R12	62.2
R13	84.7
R14	95.3

Table 20: Test data per Sphere-Spectroradiometer Method

Note: According to CIE $1976\left(u^{\prime}, v^{\prime}\right)$ diagram, $u^{\prime}=u=4 x /(-2 x+12 y+3), v^{\prime}=3 v / 2=9 y /(-2 x+12 y+3)$.

Spectral Power Distribution - Sphere Spectroradiometer Method

Chart 22: Spectral Power Distribution

Spectral Distribution over Visible Wavelength								
WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	WL(nm)	Radiant(Watts)	
380	$2.36 \mathrm{E}-04$	485	$1.18 \mathrm{E}-02$	590	$2.90 \mathrm{E}-02$	695	$4.36 \mathrm{E}-03$	
385	$2.26 \mathrm{E}-04$	490	$1.32 \mathrm{E}-02$	595	$2.87 \mathrm{E}-02$	700	$3.73 \mathrm{E}-03$	
390	$2.13 \mathrm{E}-04$	495	$1.56 \mathrm{E}-02$	600	$2.82 \mathrm{E}-02$	705	$3.20 \mathrm{E}-03$	
395	$1.99 \mathrm{E}-04$	500	$1.82 \mathrm{E}-02$	605	$2.75 \mathrm{E}-02$	710	$2.73 \mathrm{E}-03$	
400	$1.74 \mathrm{E}-04$	505	$2.06 \mathrm{E}-02$	610	$2.66 \mathrm{E}-02$	715	$2.35 \mathrm{E}-03$	
405	$2.16 \mathrm{E}-04$	510	$2.23 \mathrm{E}-02$	615	$2.54 \mathrm{E}-02$	720	$2.01 \mathrm{E}-03$	
410	$3.66 \mathrm{E}-04$	515	$2.39 \mathrm{E}-02$	620	$2.40 \mathrm{E}-02$	725	$1.73 \mathrm{E}-03$	
415	$7.95 \mathrm{E}-04$	520	$2.49 \mathrm{E}-02$	625	$2.26 \mathrm{E}-02$	730	$1.47 \mathrm{E}-03$	
420	$1.64 \mathrm{E}-03$	525	$2.56 \mathrm{E}-02$	630	$2.10 \mathrm{E}-02$	735	$1.26 \mathrm{E}-03$	
425	$3.33 \mathrm{E}-03$	530	$2.61 \mathrm{E}-02$	635	$1.94 \mathrm{E}-02$	740	$1.07 \mathrm{E}-03$	
430	$6.56 \mathrm{E}-03$	535	$2.64 \mathrm{E}-02$	640	$1.77 \mathrm{E}-02$	745	$9.13 \mathrm{E}-04$	
435	$1.24 \mathrm{E}-02$	540	$2.68 \mathrm{E}-02$	645	$1.61 \mathrm{E}-02$	750	$7.81 \mathrm{E}-04$	
440	$2.28 \mathrm{E}-02$	545	$2.72 \mathrm{E}-02$	650	$1.44 \mathrm{E}-02$	755	$6.60 \mathrm{E}-04$	
445	$4.13 \mathrm{E}-02$	550	$2.75 \mathrm{E}-02$	655	$1.29 \mathrm{E}-02$	760	$5.67 \mathrm{E}-04$	
450	$5.58 \mathrm{E}-02$	555	$2.79 \mathrm{E}-02$	660	$1.15 \mathrm{E}-02$	765	$4.98 \mathrm{E}-04$	
455	$4.31 \mathrm{E}-02$	560	$2.82 \mathrm{E}-02$	665	$1.01 \mathrm{E}-02$	770	$4.25 \mathrm{E}-04$	
460	$2.79 \mathrm{E}-02$	565	$2.85 \mathrm{E}-02$	670	$8.88 \mathrm{E}-03$	775	$3.61 \mathrm{E}-04$	
465	$2.22 \mathrm{E}-02$	570	$2.88 \mathrm{E}-02$	675	$7.77 \mathrm{E}-03$	780	$3.10 \mathrm{E}-04$	
470	$1.62 \mathrm{E}-02$	575	$2.90 \mathrm{E}-02$	680	$6.75 \mathrm{E}-03$			
475	$1.20 \mathrm{E}-02$	580	$2.91 \mathrm{E}-02$	685	$5.84 \mathrm{E}-03$			
480	$1.13 \mathrm{E}-02$	585	$2.92 \mathrm{E}-02$	690	$5.07 \mathrm{E}-03$			

Table 21: Spectral Power Distribution Numerical Data per Sphere - Spectroradiometer Method

Chromaticity Diagram - Sphere Spectroradiometer Method

Tristimulus values(x, y): (0.3412, 0.3497)
Chart 23: Chromaticity Diagram per Sphere - Spectroradiometer Method

Note: The location on the diagram of the tristimulus coordinates are indicated by the blue diamond.

Nominal CCT Quadrangles - Sphere Spectroradiometer Method

Chart 24: Plot of Lamp x/y coordinates on CIE 1931 Chromaticity Diagram

Color Rendition Report - Sphere Spectroradiometer Method

ANSI/IES TM-30-18 Color Rendition Report

Source: LED

Date: 2022/11/09

Manufacturer: P.Q.L., Inc.
Model: 91476

Notes: This is a recommended method for displaying ANSI/IES TM-30-18 information.

x	0.3412
y	0.3497
u^{\prime}	0.2096
v^{\prime}	0.4832

CIE	13. $3-1995$ (CRI)
R_{a}	84
R_{9}	17

Colors are for visual orientation purposes only. Created with the ANSI/IES TM-30-18 Calculator Version 2. 00.
Chart 25: Full Report Created with the IES TM-30 Calculator

Note: The values in this diagram might be a little different from the values in Table 20 due to rounding.

Quality Assured

Goniophotometer Method

Test ambient temperature was $25.8^{\circ} \mathrm{C}$.
The photometric distance is $\underline{30} \mathrm{~m}$.
Luminous data was taken at 0.5° vertical intervals and 10° horizontal intervals.

Parameter	Result
Test Voltage (V)	120.0
Voltage frequency (Hz)	60
Test Current (A)	0.106
Power Factor	0.9793
Power (W)	12.50
Luminous Efficacy (lm/W)	150.8
Total Luminous Flux (lm)	$116.2\left(0^{\circ}-180^{\circ}\right) / 246.4\left(90^{\circ}-270^{\circ}\right)$
Beam Angle $\left(^{\circ}\right)$	292
Center Beam Candle Power (cd)	$293.3(\mathrm{At:} \mathrm{C=110.0}, \mathrm{Gamma=7.5)}$
Maximum Beam Candle Power (cd)	$1.31\left(0^{\circ}-180^{\circ}\right) / 1.45\left(90^{\circ}-270^{\circ}\right)$
Spacing Criteria	
Zonal Lumens in the $0^{\circ}-60^{\circ}$ Zone	41.16%
Zonal Lumens in the $60^{\circ}-90^{\circ}$ Zone	27.11%
Zonal Lumens in the $90^{\circ}-120^{\circ}$ Zone	18.82%
Zonal Lumens in the $120^{\circ}-180^{\circ}$ Zone	

Table 22: Test data per Goniophotometer Method

Zonal Lumen Tabulation- Goniophotometer Method

$\gamma\left({ }^{\circ}\right)$	Lumens	\% Total
$0-10$	27.73	1.47%
$10-20$	80.814	4.29%
$20-30$	127.057	6.74%
$30-40$	162.622	8.63%
$40-50$	184.919	9.81%
$50-60$	192.814	10.23%
$60-70$	187.293	9.94%
$70-80$	171.659	9.11%
$80-90$	152.133	8.07%
$90-100$	134.396	7.13%
$100-110$	118.152	6.27%
$110-120$	102.174	5.42%
$120-130$	84.37	4.48%
$130-140$	65.776	3.49%
$140-150$	45.344	2.41%
$150-160$	25.991	1.38%
$160-170$	15.636	0.83%
$170-180$	6.196	0.33%
Total	1885.1	100%

$\gamma\left({ }^{\circ}\right)$	Lumens	\% Total
$0-60$	775.956	41.16%
$60-90$	511.085	27.11%
$0-90$	1287.04	68.28%
$90-180$	598.035	31.72%
$0-180$	1885.1	100%

Table 23: Zonal Lumen

Illuminance Plots- Goniophotometer Method

Chart 26: Illuminance Plot (Footcandles)

Luminous Intensity Distribution Plots- Goniophotometer Method

$10 \frac{8}{8}$	29.33
20\%	58.67
30%	88.00
40\%	117.3
50 늘	146.7
60\%	176.0
70 울	205.3
80 울	234.7
90\%	264.0

Chart 28: Polar Candela Distribution

Luminous Intensity Data- Goniophotometer Method

Table 24: Luminous Intensity Data

Quality Assured

Table 25: Luminous Intensity Data

Prepared by: Leading Testing Laboratories

Quality Assured

ISTMT Test Results

Test ambient temperature was $24.7^{\circ} \mathrm{C}$.
Test orientation was light down.
Model of light source: BXVN-30E-11L-3EJ-000-00-00-0
The stabilization time of the sample was 7.5 hours.

View of In-Situ Point- Ts

Location of In-Situ Point from overall view

Input Voltage (V)	Input Power (W)	Tested LED source current (mA)	Measured In-Situ Maximum Temperature(Corrected to $\left.\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
			Point A	Point B
	12.12	48.7	39.2	42.2
277.0	12.43	48.8	39.0	42.0

EQUIPMENT LIST

Test Equipment	Model	Equipment No.	Calibration Date	Calibration Due date
Goniophotometer system	GO-R5000	HZTE011-01	Aug. 05, 2022	Aug. 04, 2023
Digital Power Meter	PF2010A	HZTE028-01	Aug. 05, 2022	Aug. 04, 2023
AC Power Supply	DPS1060	HZTE001-06	Aug. 05, 2022	Aug. 04, 2023
DC Power Supply	WY12010	HZTE004-03	Aug. 05, 2022	Aug. 04, 2023
Temperature recorder	JM624U	HZTE018-08	Aug. 05, 2022	Aug. 04, 2023
Temperature and humidity recorder	JR900	HZTE018-01	Aug. 05, 2022	Aug. 04, 2023
Standard source	D908	HZTE012-01	Aug. 05, 2022	Aug. 04, 2023
Integrate Sphere system	3M	HZTE015-04	Aug. 05, 2022	Aug. 04, 2023
Digital Power Meter	WT210	HZTE008-01	Aug. 05, 2022	Aug. 04, 2023
AC Power Supply	PCR 500L	HZTE001-07	Aug. 05, 2022	Aug. 04, 2023
DC Power Supply	IT6154	HZTE004-04	Aug. 05, 2022	Aug. 04, 2023
Standard source	SCL-1400	HZTE012-02	Aug. 05, 2022	Aug. 04, 2023
Temperature and humidity recorder	JR900	HZTE018-02	Aug. 05, 2022	Aug. 04, 2023
Temperature Meter	TES1310	HZTE017-01	Aug. 05, 2022	Aug. 04, 2023
Multi-Meter	FLUKE15B	HZTE020-01	Aug. 05, 2022	Aug. 04, 2023

Table 26: Test Equipment List

TEST METHODS

Seasoning of SSL Product

For the purpose of rating new SSL products, SSL products shall be tested with no seasoning. Therefore, no seasoning was performed.

Sphere-Spectroradiometer Method- Photometric and Electrical Measurements

A Labsphere Model CDS 2100 Spectroradiometer and 3 Meter Sphere was used to measure correlated color temperature, chromaticity coordinates, and the color rendering index for each SSL unit. The coating reflectance of each sphere is 98%. The measure geometry is 4π. Self-absorption correction is conducted in testing. Bandwidth of spectroradiometer is $350 \mathrm{~nm}-1050 \mathrm{~nm}$.
Ambient temperature was measured at a position inside the sphere. Each SSL unit was operated on the client provided driver at the rated input voltage in its designated orientation.
The stabilization time typically ranges from 30 min (small integrated LED lamps) to 2 or more hours for large SSL luminaires). It can be judged that stability is reached when the variation (maximum - minimum) of at least 3 readings of the light output and electrical power over a period of 20 min , taken 10 minutes apart, is less than 0.5%.

Electrical measurements including voltage, current, and power were measured using the Yokogawa Power Analyzer.
The standard reference of the integrated sphere system is halogen incandescent lamp, the intensity distribution type is omni-directional, and is traceable to the National Institute of Standards and Technology.

Quality Assured
The uncertainty of integrating sphere system reported in this document is expended uncertainty is 2.1% with a coverage factor $\mathrm{k}=2$.

Goniophotometer Method

Photometric and Electrical Measurements

An EVERFINE Type C Model GO-R5000 Goniophotometer was used to measure the intensity at each angle of distribution for each sample. The photometric distance is 2.475 m for near-field measurement or 30 m for far-field measurement. Bandwidth of spectroradiometer is $380 \mathrm{~nm}-780 \mathrm{~nm}$.
Ambient temperature was measured at the same height of the sample mounted on the Goniophotometer equipment. Each SSL unit was operated on the client provided driver at the rated input voltage in its designated orientation.
The stabilization time typically ranges from 30 min (small integrated LED lamps) to 2 or more hours for large SSL luminaires). It can be judged that stability is reached when the variation (maximum - minimum) of at least 3 readings of the light output and electrical power over a period of 20 min , taken 10 minutes apart, is less than 0.5%.
Electrical measurements including voltage, current, and power were measured using the Everfine Digital Power Meter.

Some graphics were created with Photometric Plus software.
The standard reference of the Goniophotometer system is halogen incandescent lamp, the intensity distribution type is omni-directional, and is traceable to the National Institute of Metrology P.R. China.
The uncertainty of goniophotometer system reported in this document is expended uncertainty is 2.3% with a coverage factor $\mathrm{k}=2$.

Color Characteristics Measurements

The color characteristics of SSL products include chromaticity coordinates, correlated color temperature, and color rendering index. These characteristics of SSL products may be spatially non-uniform, and thus, in order that they can be specified accurately, the color quantities shall be measured as values that are spatially average, weighted to intensity, over the angular range where light is intentionally emitted from the SSL product. The color characteristics measurements are using gonio-spectroradiometer.

ISTMT Measurements

The luminaire was installed to simulate intended usage, in accordance with the manufacturer's instructions.

Temperatures were measured after they stabilized, when the test was run for a minimum of 7.5 h .

The tests were conducted in an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$. Ambient temperature variations above or
below $25^{\circ} \mathrm{C}$ were respectively subtracted from or added to temperatures recorded at points on the luminaire. Temperatures recorded at points on a luminaire were measured by means of thermocouples.

The thermocouples had conductors no larger than No. 24 AWG ($0.21 \mathrm{~mm}^{2}$) and no smaller than No. 30 AWG $\left(0.05 \mathrm{~mm}^{2}\right)$. Thermocouples complied with the requirements specified in ASTM MNL 12 and thermocouples as listed in the table of the limits of error specified in NIST ITS 90, or ISA MC96.1.

The luminaire was installed in the test box in the configuration that resulted in the highest operating temperatures, considering different trim and maximum lamp wattage combinations, lamp holder adjustment heights, and the like.

The test box was constructed of 12 mm thick plywood as described below:
The test box was rectangular and had four sides and a bottom.
The four sides of the test box for a ceiling-mounted luminaire were a minimum distance of 8.5 in (215 mm) from the nearest part of the lamp housing or heat-producing parts. The top edge of the sides of the test box were a minimum of $8.5 \mathrm{in}(215 \mathrm{~mm})$ above the highest point of any permanently attached part of the lamp housing.
Thermal insulation of the loose-fill type was poured into the test box through the open top, until level with the top, without applying any compacting procedure.
The thermal insulation was conditioned to the density specified by the insulation manufacturer to obtain a required rated thermal resistance of Rsi 0.56 to 0.678 (R3.2 to R3.85).
All spaces around the luminaire and between it and the sides of the box were filled with the thermal insulation.
*** End of Report ***
This report is considered invalidated without the Special Seal for Inspection of the LTL. This report shall not be altered, increased or deleted. The results shown in this test report refer only to the sample(s) tested. Without written approval of LTL, this test report shall not be copied except in full and published as advertisement.

[^0]: Note: 'This report does not imply product certification, approval, or endorsement by NVLAP, NIS'F, or any agency of the Federal

